Effect of Fault Dip and Slip Rake Angles on Near-Source Ground Motions: Why Chi-Chi Was a Relatively Mild M 7.6 Earthquake

Brad Aagaard U.S. Geological Survey

Pasadena, CA baagaard@usgs.gov

Chi-Chi ---

John Hall California Institute of Technology FERL

Pasadena, CA iohnhall@caltech.edu FERL

Deeper

Hypocenter

Thomas Heaton California Institute of Technology Pasadena, CA heatont@caltech.edu

Summary

We study how the fault dip and slip rake angles affect near-source ground motions as the faulting mechanism transitions from strike-slip motion on a vertical fault to thrust motion on a shallow dipping fault.

Methodology

- 3-D dynamic elasticity
- Unstructured, tetrahedral finite-element mesh
- Prescribed rupture speed and slip time histories

Scenarios

- Moment magnitude: 7.4
- Uniform peak slip rate: 2.0m/sec
- Rupture speed: 85% shear wave speed parallel to slip 68% shear wave speed perp. to slip

Fault Geometries

Fault Dip	Slip Rake	Fault Length	Fault Width	
90°	0°	120km	20km	
75°	22.5°	110km	22km	
60°	45°	100km	24km	
45°	67.5°	90km	27km	
30°	90°	80km	30km	

Scenario with 30° dipping fault and shallow hypocenter closely resembles the 1999 Chi-Chi. Taiwan, earthquake.

Shallow Hypocenter

Maximum Values on Ground Surface

Fault Dip	Max. Horiz. Disp.	Max. P-to-P Horiz. Vel.
90°	2.6m	2.6m/sec
75°	3.3m	3.7m/sec
60°	3.2m	4.2m/sec
45°	2.2m	2.7m/sec
30°	3.1m	1.7m/sec

Deep Hypocenter

Maximum Values on Ground Surface

	Fault Dip	Max. Horiz. Disp.	Max. P-to-P Horiz. Vel.	
	90°	2.6m	2.0m/sec 2.8m/sec	
	75°	3.1m		
	60°	2.8m	2.8m/sec	
	45°	2.3m	2.4m/sec	
+	30°	3.1m	2.2m/sec	

Ground Area Where Motion Exceeds Given Level

Mean Peak Values Versus Distance

Ground Area Where Value Exceeds Given Level

Mean Peak Values Versus Distance

Conclusions

- The fault geometry and shallow hypocenter of the Chi-Chi earthquake minimized the amplitude of the near-source velocity pulses.
- We should expect larger amplitude velocity pulses for other styles of faulting or a deeper hypocenter.
- The amount of rupture in the direction parallel to slip controls the near-source effects.
- For strike-slip motion near-source effects are most severe for unilateral rupture.
- For thrust motion near-source effects are most severe for up-dip rupture.

Minimal Directivity

Moderate Directivity

This work was supported in part by the Pacific Earthquake Engineering Research Center.

Technical report available at http://pasadena.wr.usgs.gov/office/baagaard/research